Nuprl Lemma : bool_1 |
13,42 |
|
COM: bool_1_begin
COM: bool_1_summary
COM: bool_1_intro
COM: BOOL_DEFS
ABS:
ABS: tt
ABS: ff
STM: bool wf
STM: btrue wf
STM: bfalse wf
ABS: if b then t else f fi
STM: ifthenelse wf
ABS: b
ABS: i <z j
STM: assert wf
STM: comb for assert wf
STM: lt int wf
ABS: b
ABS: p q
ABS: p q
ABS: i z j
STM: btrue neq bfalse
STM: bnot wf
STM: band wf
STM: bor wf
STM: bor ff simp
STM: bor tt simp
STM: band ff simp
STM: band tt simp
STM: bnot bnot elim
STM: le int wf
STM: bnot thru band
STM: bnot thru bor
STM: bnot of le int
STM: bnot of lt int
ABS: b2i(b)
STM: b2i wf
STM: comb for b2i wf
STM: b2i bounds
STM: comb for bnot wf
STM: comb for bor wf
STM: comb for band wf
ABS: p =b q
STM: eq bool wf
ABS: p b q
STM: bxor wf
ABS: p q
STM: bimplies wf
STM: comb for bimplies wf
ABS: p q
STM: rev bimplies wf
ABS: (i = j)
STM: eq int wf
ABS: x =a y
STM: eq atom wf
COM: bool_thms
STM: bool cases
STM: bool ind
STM: decidable equal bool
STM: bimplies weakening
STM: bimplies transitivity
STM: assert functionality wrt bimplies
COM: bool_tactics_1
COM: assert_com
STM: assert of tt
STM: assert of ff
STM: assert elim
STM: not assert elim
STM: eqtt to assert
STM: eqff to assert
STM: decidable assert
STM: iff imp equal bool
STM: assert of eq atom
STM: assert of eq int
STM: neg assert of eq int
STM: neg assert of eq atom
STM: assert of lt int
COM: assert_eqint_rw
STM: assert of eq int rw
STM: assert of eq bool
STM: assert of bnot
STM: assert of band
STM: assert of bor
STM: assert of bimplies
STM: assert of le int
COM: bool_tactics
STM: ite rw test
STM: ite rw false
STM: ite rw true
STM: fun thru ite
COM: old_bool_1_stuff
STM: eq int eq false
STM: eq int eq true
STM: eq int eq false elim
STM: eq int eq true elim
STM: eq int cases test
STM: comb for lt int wf
COM: bool_1_end